

Student Name:

TIME ALLOWED FOR THIS PAPER

Suggested: Reading and Working time for Cal Free paper:

25 minutes in class under test conditions

1

MATERIAL REQUIRED / RECOMMENDED FOR THIS PAPER

TO BE PROVIDED BY THE SUPERVISOR Question/answer booklet

TO BE PROVIDED BY THE CANDIDATE

Standard Items: pens, pencils, pencil sharpener, highlighter, eraser, ruler, drawing templates, Calculator

IMPORTANT NOTE TO CANDIDATES

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be attempted	Suggested working time (minutes)	Marks available
Calculator Free	3	3	25	40
			Marks available:	/40
			Task Weighting	7% for the pair of units

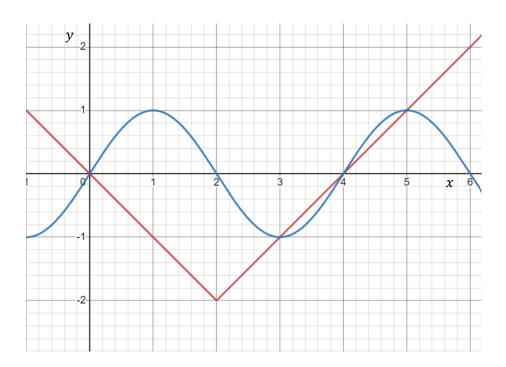
Instructions to candidates

Consider $\frac{dy}{dx} = f(x)$, this is called a differential equation, more specifically a first order differential equation. To solve or find the general solution of a differential equation is to do the reverse of differentiation.

To find the general solution of a differential equation, then some additional information must be required.

Solve the following differential equations to find the general solution or particular solution.

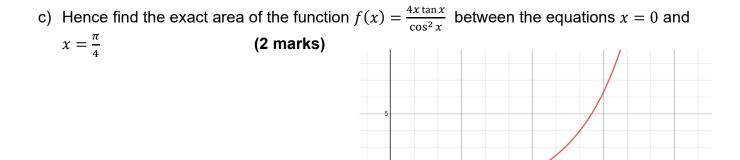
a)
$$\frac{dy}{dx} = 3x^2 + (x+1)(x^2 + 2x + 1)^2 + e$$
 (3 marks)


b)
$$\frac{dy}{dx} = \frac{13x}{\sqrt{4x^2 - 7}} at (2, \frac{3}{4})$$
 (4 marks)

c)
$$\frac{dx}{dy} = \frac{3}{(\tan^2 x + 1 + e^{4x} + \frac{3}{\sqrt{3x+4}})}$$

(*Hint: manipulate the Pythagorean identity*) (6 marks)

AIC- Yr12-MathsMethods-Test2-CF


Determine the exact area of the region trapped by $y = \sin \frac{1}{2}\pi x$ and y = |x - 2| - 2, from the origin to x = 3. (8 marks)

The function is given as $y = \frac{x}{\cos^2 x} + x \sin x$.

a) Find
$$\frac{d}{dx}(\frac{x}{\cos^2 x} + x \sin x)$$
 (2 marks)

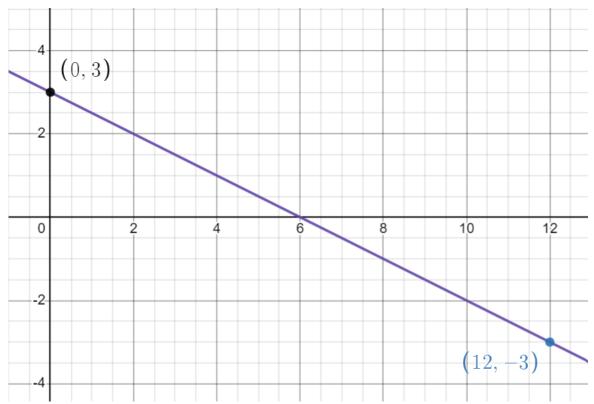
b) Hence, by using
$$\frac{d}{dx}(x \sin x)$$
, find $\int \frac{4x \tan x}{\cos^2 x} dx$. (6 marks)

0

π/12

(12 marks)

4


AIC- Yr12-MathsMethods-Test2-CF

π/4

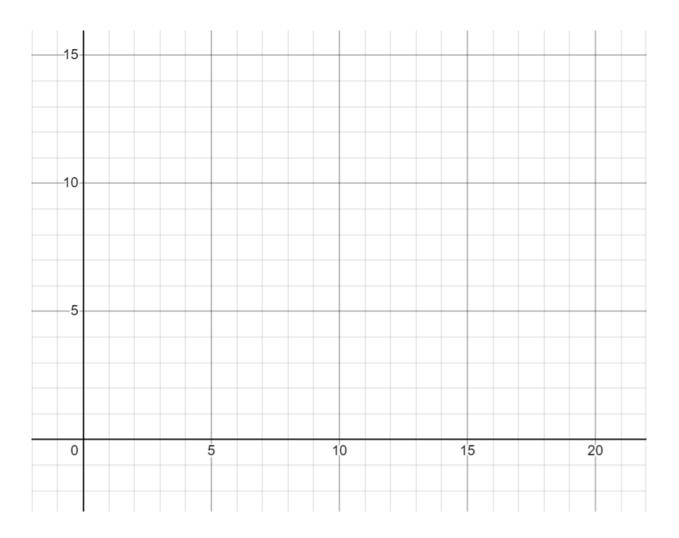
π/3

π/6

(7 marks)

Shown below is a graph of y = f(t), and consider only by the interval of [0,12]

A man saw this graph and said he wanted to make another equation relating to this, but involving with derivatives and integrals. He came up with the equation of F(x), where...


$$F(x) = \frac{d}{dx} \left(\int_0^x f(t) \, dt \right)$$

Explain by using the knowledge of the fundamental theorem of calculus, why this doesn't change anything. (2 marks)

The man then wanted to make another equation A(x), where...

$$A(x) = \int_0^x f(t) \, dt$$

Sketch A(x) below, labelling the local maximum/minimum, the coordinates at x = 6 and x = 12 for the given interval [0,12]. (5 marks)

END OF CALCULATOR-FREE

Additional working space

Question number: _____